Dipole-Dipole Interaction Strength and Dipole Blockade Radius using Förster Resonances in Rb Atoms

T. Kirova¹, I. I. Beterov², M. Auzins³, Y.-H. Chen⁴ and I. A. Yu⁴

¹Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia

²Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia

³Laser Centre, University of Latvia, LV-1002, Riga, Latvia

⁴Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

E-mail: teo@lu.lv

Dipole blockade [1] is a phenomenon, where due to dipole-dipole (DD) interaction between Rydberg atoms the simultaneous excitation of two/multiple Rydberg atoms in a "blockade sphere" [2] is suppressed. Our aim is to find the best experimental parameters necessary to achieve dipole blockade radius of $R_b \approx 50\mu m$, which will be later measured experimentally. We are especially interested in the resonant $1/R^{-3}$ type DD interaction, which happens in the presence of Förster resonances, e.g. the $58d_{3/2} + 58d_{3/2} \rightarrow 60p_{1/2} + 56f_{5/2}$ transition in ^{87}Rb [3], leading to $R_b = 10\mu m$, or $81s_{1/2} + 84s_{1/2} \rightarrow 81p_{1/2} + 83p_{1/2}$ transition [4], which allows for $R_b = 22\mu m$ to be achieved for the experimentally accessible excitation laser Rabi frequency of 6MHz. With our purpose in mind, we calculate the magnitude of C_6 coefficients for specific Förster transitions in ^{87}Rb of the form $n_a d_{3/2,5/2} + n_b d_{3/2,5/2} \rightarrow n_\alpha l_\alpha j_\alpha + n_\beta l_\beta j_\beta$. The two atoms are initially in the $d_{3/2,5/2}$ states, while the l and jnumbers of the final states can take different values. The principal quantum numbers n_a and n_b of the initial states can differ by $\pm 1, \pm 2, \pm 3$, etc., while those of the final states can be the same or different. A large C_6 coefficient is associated with a minimum in the absolute value of the Förster defect δ_k , which we plot as a function of the principle quantum number n_a for the transitions descibed above. We found that in all cases under study, the " δ_k vs n_a " curves show diverging behavior and no minimum of the absolute value of δ_k is observed. An

FIG. 1: Förster defect vs principal quantum number when atoms are initially in the $p_{1/2}$ states, where $n_b = n_a + 20$ and $n_\beta = n_\alpha + 19$.

interesting case when the initial principal quantum numbers of the two atoms differ by a significant amount, is studied experimentally in [5], e.g. $60p + 80p \rightarrow 59d + 78d$. Here we extend the study of Förster defect vs principal quantum number for transitions $n_a p_{1/2,3/2} + n_b p_{1/2,3/2} \rightarrow n_\alpha l_\alpha j_\alpha + n_\beta l_\beta j_\beta$. All obtained curves are crossing the " $\delta_k = 0$ " line in the vicinity of $n_a = 60$, besides the one for $np_{1/2} + (n + 20)p_{1/2} \rightarrow (n - 1)d_{3/2} + (n + 18)d_{3/2}$ transition, shown in FIG. 1. The minimum occurs at $n_a = 65$, corresponding to $\delta_k = 3.47MHz$, $C_6 = -219000GHz\mu m^6$, and giving a blockade radius of $R_b = 18.21\mu m$. We are curently studying similar transitions within the d states manifold, looking for the cases which will give the maximum possible R_b .

This work was supported by the Trilateral Grant of the Latvian, Lithuanian, and Taiwanese Research Councils *Quantum and Nonlinear Optics with Rydberg-State Atoms* (2016-2018) FP-20578-ZF-N-100.

- [1] A. Gaetan *et al.*, Nature **5**, 115 (2009).
- [2] D. Tong, et al., Phys. Rev. Lett, 93, 063001 (2004).
- [3] T. Walker and M. Saffman, Phys. Rev. A, 77, 032723 (2008).
- [4] I. I. Beterov and M. Saffman, Phys. Rev. A, 92, 042710 (2015).
- [5] I. I. Beterov et al., Phys. Rev. A, 97, 032701 (2018).