4D Topological Physics with Synthetic Dimensions

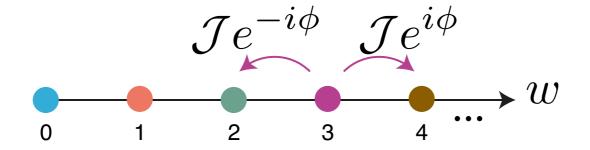
Hannah Price University of Birmingham, UK

Synthetic Dimensions

General Concept:

1. Identify a set of states and reinterpret as sites in a synthetic dimension

2. Couple these modes to simulate a tight-binding "hopping"



WHY?

- Implement artificial gauge fields
- Reach higher-dimensional models

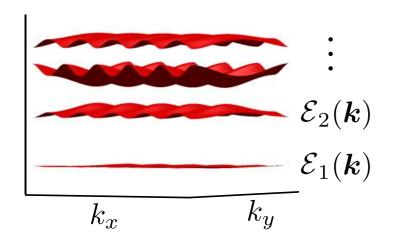
Outline

1. Reminder of the 2D Quantum Hall Effect

2. 4D Topological Physics

3. 4D Quantum Hall in Synthetic Dimensions

2D Quantum Hall Effect



$$\begin{bmatrix} E_y \\ \Omega_{xy}^n \end{bmatrix} \xrightarrow{j_x}$$

$$\begin{array}{c|c}
E_y \\
\hline
 j_x
\end{array} \qquad j_x = -\frac{q^2}{h} E_y \sum_{n \in occ.} \nu_1^n \\
\text{band insulator}$$

Geometrical Berry curvature

$$\Omega_{xy}^{n} = i \left[\langle \frac{\partial u_n}{\partial k_x} | \frac{\partial u_n}{\partial k_y} \rangle - \langle \frac{\partial u_n}{\partial k_y} | \frac{\partial u_n}{\partial k_x} \rangle \right]$$

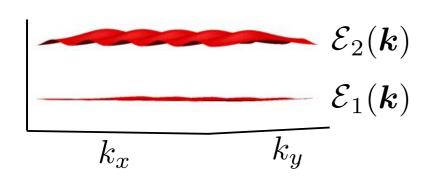
Bloch states
$$\psi_{n,\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,k}(\mathbf{r})$$

Topological First Chern number

$$\nu_1^n = \frac{1}{2\pi} \int_{BZ} \Omega_{xy}^n dk_x dk_y$$

Topological transitions only when band-gap closes

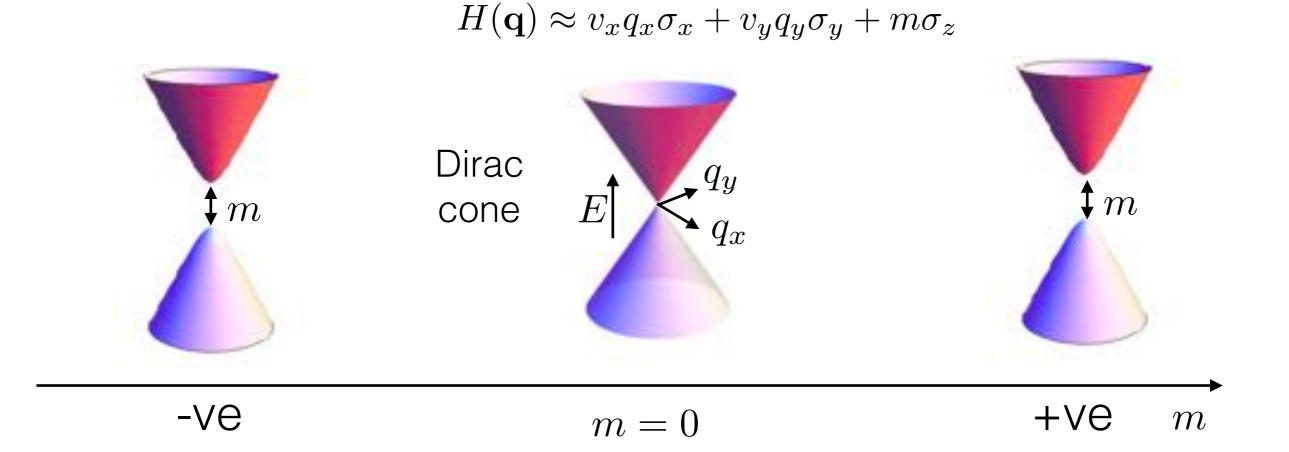
How to get a 2D QH system?



Minimal two-band model, e.g. spinless atoms on lattice with two-site unit cell:

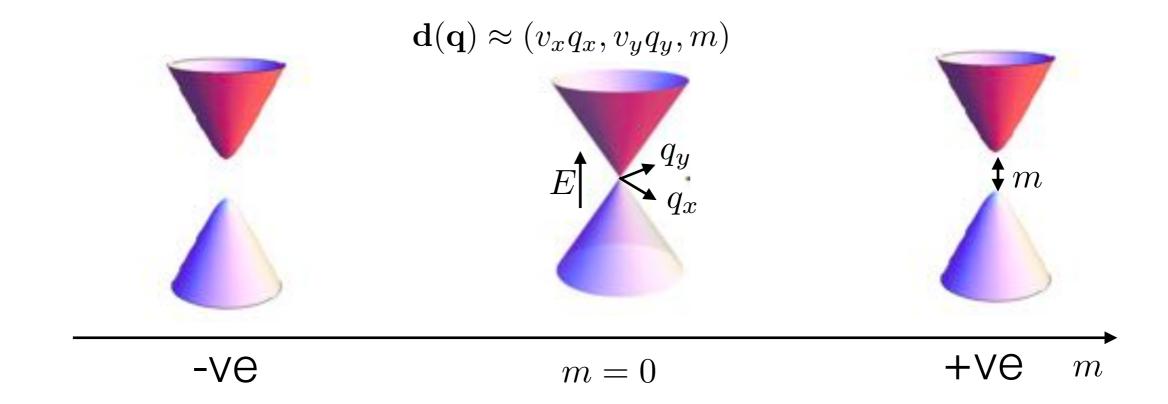
$$H(\mathbf{k}) = \varepsilon(\mathbf{k})\hat{I} + \mathbf{d}(\mathbf{k}) \cdot \sigma$$

Topological transitions: e.g. at Dirac points



Berry curvature

$$H(\mathbf{q}) \approx \mathbf{d}(\mathbf{q}) \cdot \sigma \longrightarrow \Omega_{xy}^{-} = \frac{1}{2} \epsilon^{abc} \hat{d}_a \partial_{q_x} \hat{d}_b \partial_{q_y} \hat{d}_c$$



Berry curvature flips across transition as $d_3 = -m \rightarrow d_3 = m$

Type 1: d_1, d_2 same signs —> increases Ω_{xy}^-

Type 2: d_1, d_2 opposite signs —> **decreases** Ω_{xy}^-

Chern Number

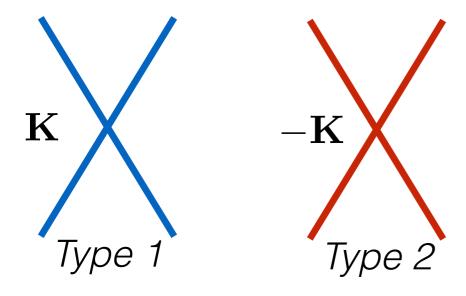
Time-reversal symmetry for **spinless** particles

$$H^*(\mathbf{k}) = H(-\mathbf{k})$$
 implies

$$d_{1,3}(\mathbf{k}) = d_{1,3}(-\mathbf{k})$$

$$d_2(\mathbf{k}) = -d_2(-\mathbf{k}) \quad \text{as } \sigma_y^* = -\sigma_y$$

So have **TRS pairs** of **opposite type**



$$\nu_1^- = \frac{1}{4\pi} \int_{BZ} \Omega_{xy}^- dk_x dk_y$$

transitions are topologically trivial with TRS

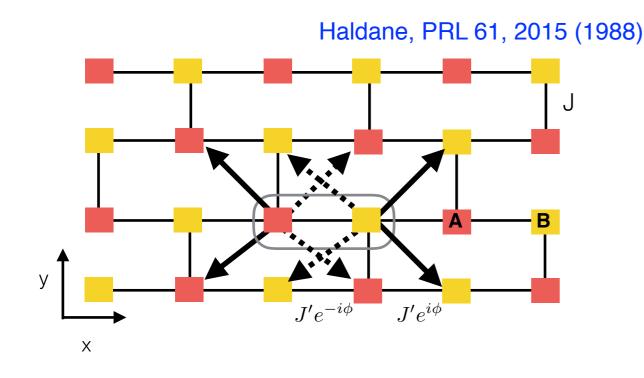
Breaking Time-Reversal Symmetry

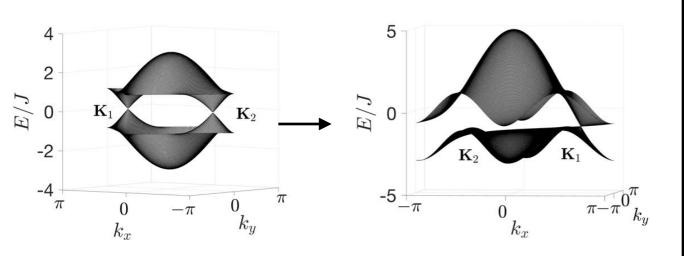
e.g.

Haldane model:

Landau levels / Hofstadter model:

Hofstadter, PRB, 14, 2239, 1976

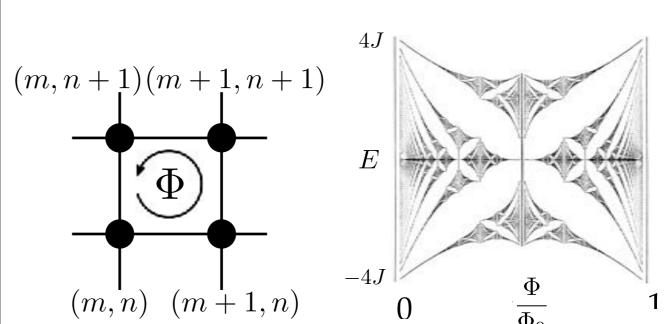




Cold atom experiments:

Jotzu et al, Nature 515, 237 (2014)

Flaschner et al, Nat. Phys. 14, 265 (2018)



$$\mathcal{H} = J \sum_{m,n} (\hat{c}_{m+1,n}^{\dagger} \hat{c}_{m,n} + e^{i2\pi\Phi m} \hat{c}_{m,n+1}^{\dagger} \hat{c}_{m,n}) + \text{h.c.}$$

Cold atom experiments:

Aidelsburger et al., PRL, 111, 185301 (2013), Miyake et al, PRL, 111, 185302 (2013), Aidelsburger et al., Nat. Phys, 11,162. (2015)....

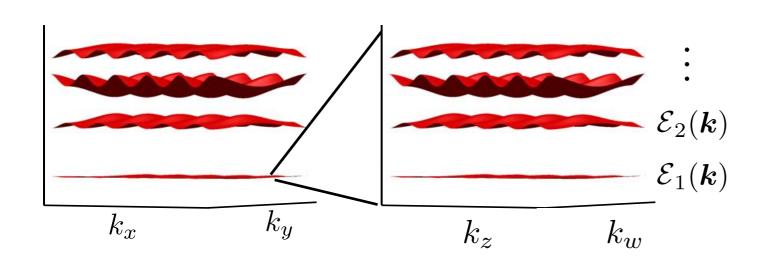
Outline

1. Reminder of the 2D Quantum Hall Effect

2. 4D Topological Physics

3. 4D Quantum Hall in Synthetic Dimensions

Second Chern Number



$$\Omega = \frac{1}{2} \Omega^{\mu\nu}(\mathbf{k}) d\mathbf{k}_{\mu} \wedge d\mathbf{k}_{\nu}$$

$$\Omega_n^{\mu\nu} = i \left[\langle \frac{\partial u_n}{\partial k_\mu} | \frac{\partial u_n}{\partial k_\nu} \rangle - \langle \frac{\partial u_n}{\partial k_\nu} | \frac{\partial u_n}{\partial k_\mu} \rangle \right]$$

First Chern number

$$\nu_1 = \frac{1}{2\pi} \int_{2DBZ} \Omega = \frac{1}{2\pi} \int_{2DBZ} \Omega^{xy} dk_x dk_y$$

Second Chern number

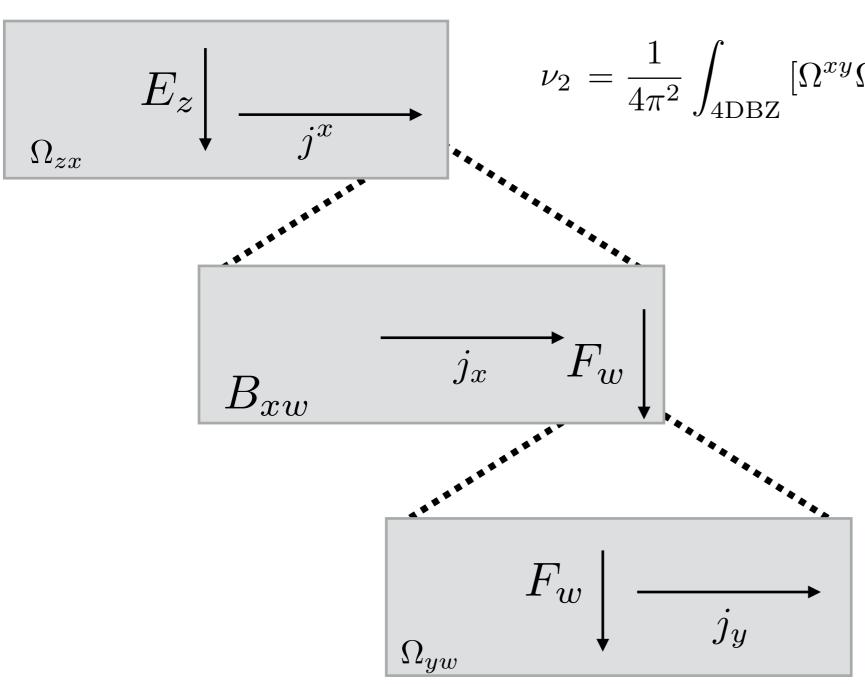
$$\nu_2 = \frac{1}{8\pi^2} \int_{4\text{DBZ}} \Omega \wedge \Omega \in \mathbb{Z}$$

$$= \frac{1}{4\pi^2} \int_{4\text{DBZ}} \left[\Omega^{xy} \Omega^{zw} + \Omega^{wx} \Omega^{zy} + \Omega^{zx} \Omega^{yw} \right] d^4k$$

(and then the third Chern number in 6D...)

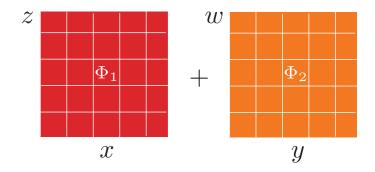
4D Quantum Hall Effect

Very simplest example: 4D Harper-Hofstadter Model



$$\nu_2 = \frac{1}{4\pi^2} \int_{4DBZ} \left[\Omega^{xy} \Omega^{zw} + \Omega^{wx} \Omega^{zy} + \Omega^{zx} \Omega^{yw} \right] d^4k$$

$$\nu_2 = \nu_1^{zx} \nu_1^{yw}$$



Response to two perturbations:

$$B_{xw} = \partial_x A_w - \partial_w A_x$$
$$E_z$$

$$j_y = -\frac{q^3}{h^2} E_z B_{xw} \nu_2^n$$

What do we need for a 4D QH system?

	Syn	nmetı	ies		Dimensions						Kitaev, arXiv:0901.2686 Ryu et al., NJP, 12, 2010, Chiu et al RMP, 88, 035005 (20)	16)
Class	T	C	S	0	1	2	3	4	5	6	7	20/
A	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	(\mathbb{Z})	0	0	0	
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
C	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}_{-}	

- 1. Preserved TRS for fermions: particles in spin-dependent gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....
- 2. Broken TRS: **4D Harper-Hofstadter model**

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

3. Preserved TRS for spinless particles: just lattice connectivity!

What do we need for a 4D QH system?

	Syn	nmetı	ies		Dimensions						Kitaev, arXiv:0901.2686 Ryu et al., NJP, 12, 2010, Chiu et al RMP, 88, 035005 (20)	16)
Class	T	C	S	0	1	2	3	4	5	6	7	20/
A	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	(\mathbb{Z})	0	0	0	
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
C	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}_{-}	

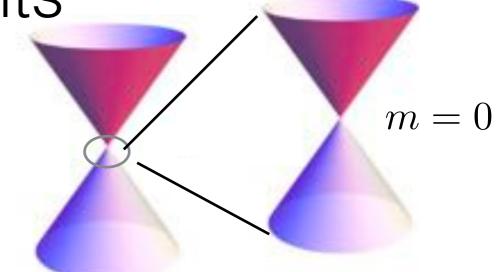
- 1. Preserved TRS for fermions: particles in spin-dependent gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....
- (2.) Broken TRS: 4D Harper-Hofstadter model

 Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...
- 3. Preserved TRS for spinless particles: just lattice connectivity!

4D Dirac points

Minimal four-band model:

$$H(\mathbf{k}) = \varepsilon(\mathbf{k})\Gamma_0 + \mathbf{d}(\mathbf{k}) \cdot \mathbf{\Gamma}$$



$$\mathbf{d}(\mathbf{q}) \approx (v_x q_x, v_y q_y, v_z q_z, v_w q_w, m)$$

Qi et al, Phys. Rev. B 78, 195424 (2008)

$$\nu_{2}^{-} = \frac{3}{8\pi^{2}} \int_{BZ} d^{4}\mathbf{k} \epsilon^{abcde} \hat{d}_{a} \partial_{k_{x}} \hat{d}_{b} \partial_{k_{y}} \hat{d}_{c} \partial_{k_{z}} \hat{d}_{d} \partial_{k_{w}} \hat{d}_{e}$$

As $d_5 = -m \rightarrow d_5 = m$

Type 1: d_1, d_2, d_3, d_4 even no/ minus signs —> **increases** integrand

Type 2: d_1, d_2, d_3, d_4 odd no/ minus signs —> **decreases** integrand

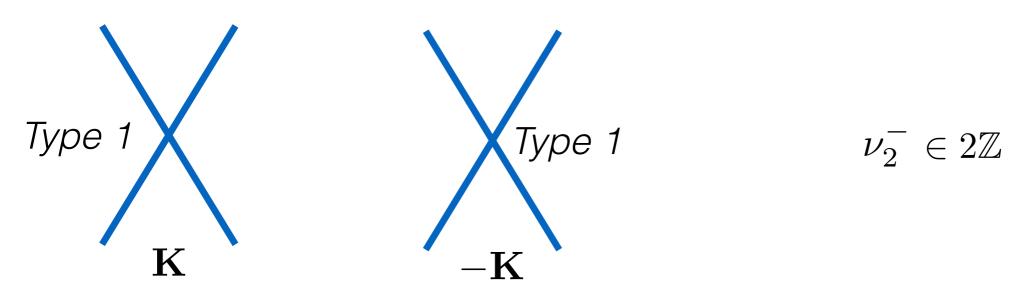
$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

4D Dirac points

Again TRS for spinless particles

$$H^*(\mathbf{k}) = H(-\mathbf{k})$$
 implies $d_{1,3,5}(\mathbf{k}) = d_{1,3,5}(-\mathbf{k})$ $d_{2,4}(\mathbf{k}) = -d_{2,4}(-\mathbf{k})$ as $\Gamma_{2,4}^* = -\Gamma_{2,4}$

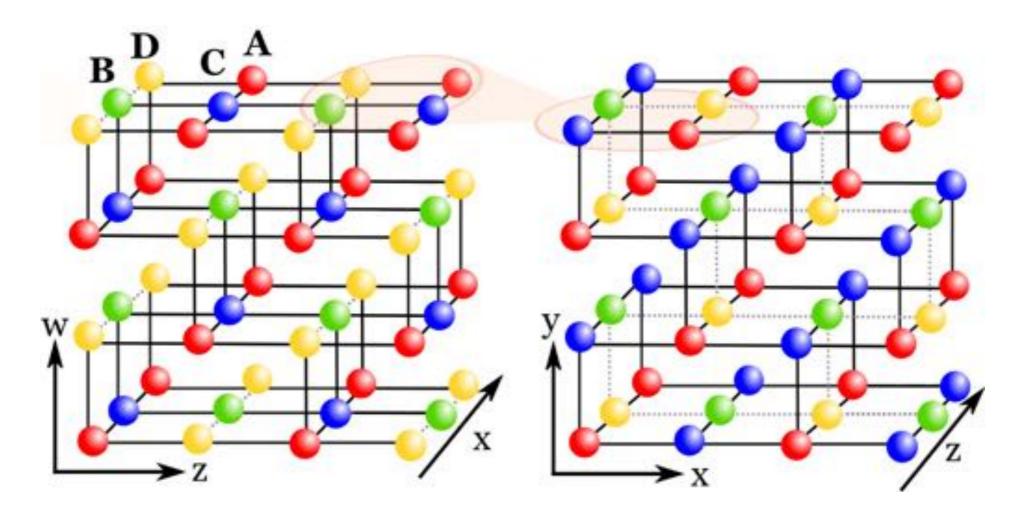
So have TRS pairs of the same type

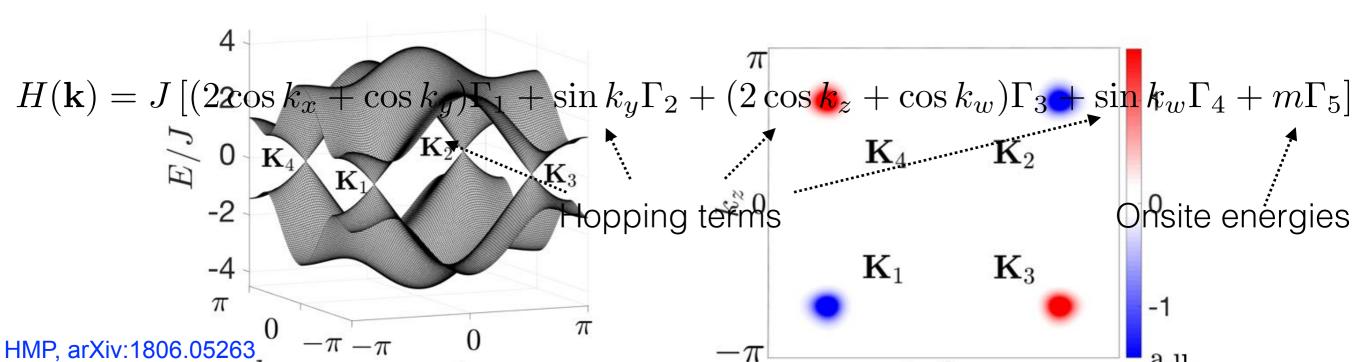


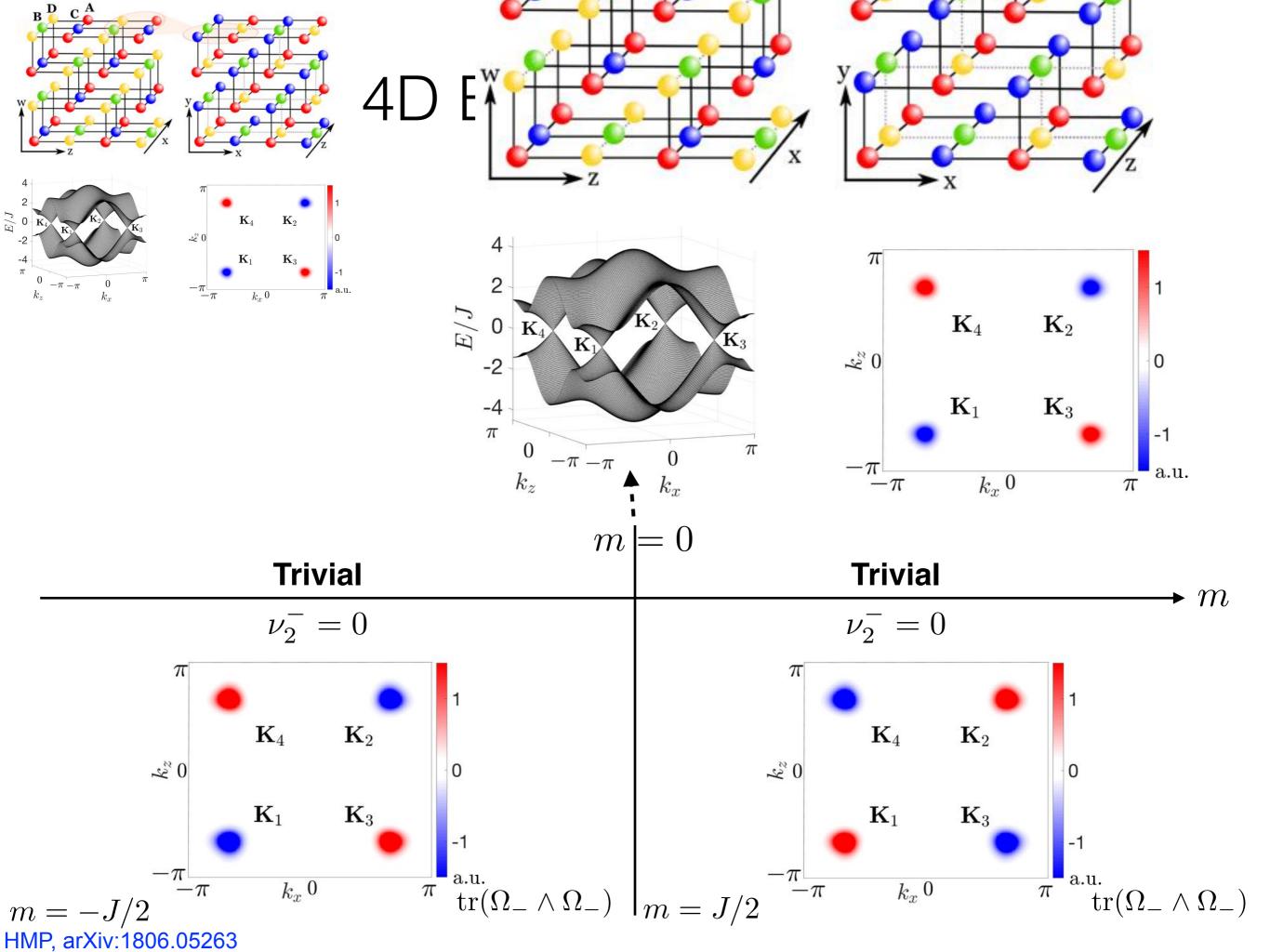
can have topological transition with TRS!

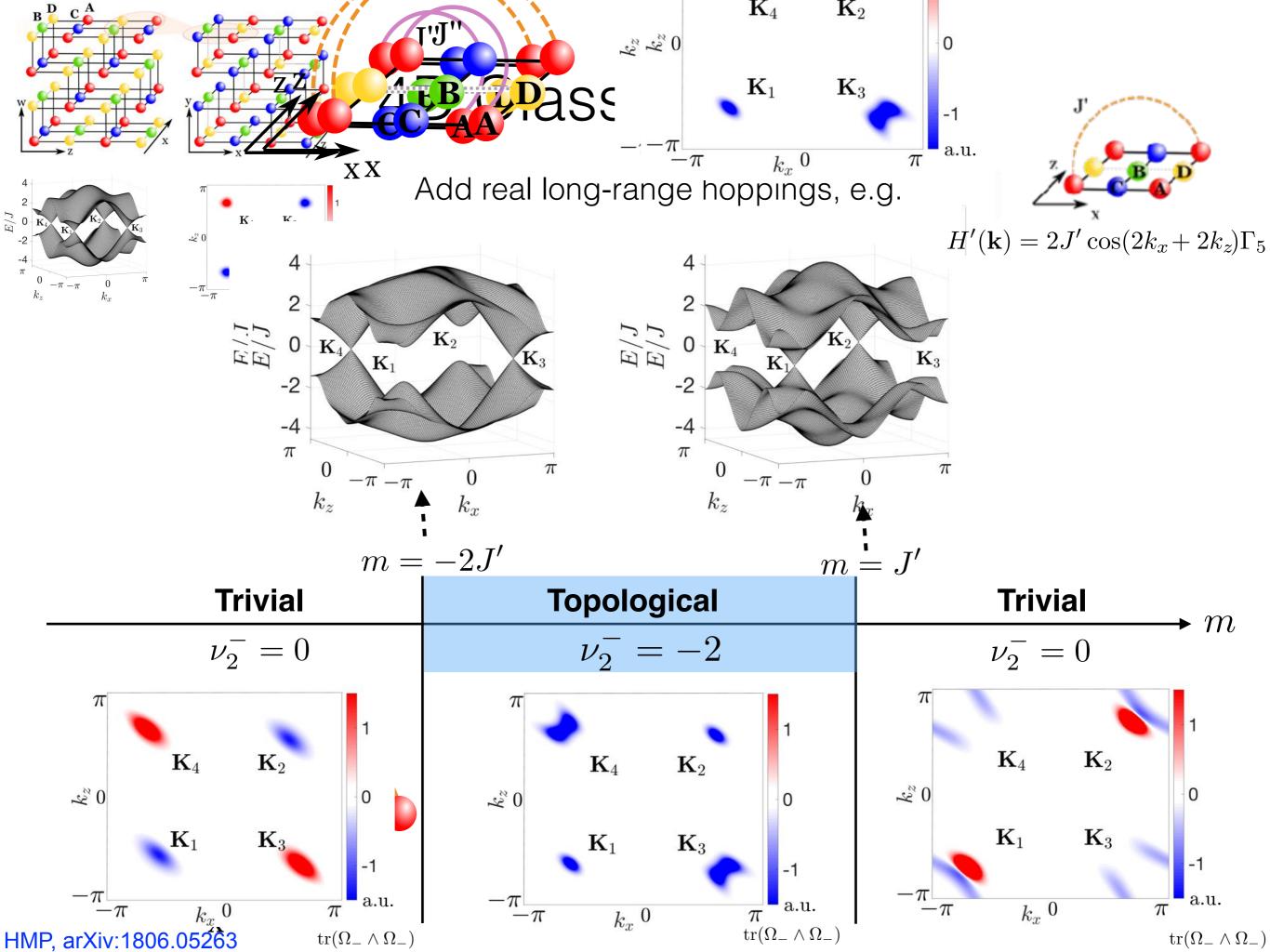
$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

4D Brickwall Lattice









Key points about 4D QH Systems

Bands labelled by integer second Chern numbers

• Quantized **non-linear** response $j_y = -\frac{q^3}{h^2} E_z B_{xw} \nu_2^n$

• **Different classes** of 4D QH systems

	S	vmn	netri	es							
Class	T	C	S	0	1	2	3	4	5	6	7
A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	(\mathbb{Z})	0	0	0
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
C	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Outline

1. Reminder of the 2D Quantum Hall Effect

2. 4D Topological Physics

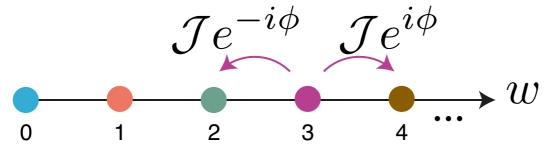
3. 4D Quantum Hall in Synthetic Dimensions

Synthetic Dimensions

General Concept:

1. Identify a set of states and reinterpret as sites in a synthetic dimension

2. Couple these modes to simulate a tight-binding "hopping"

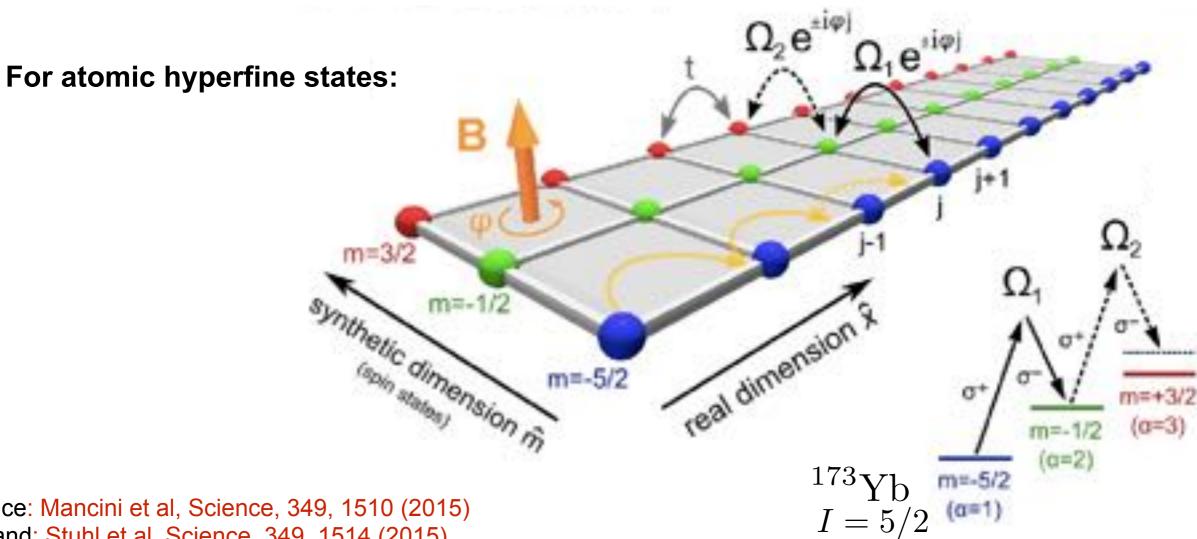


HOW?

Synthetic dimension with internal atomic states

Ingredients:

- 1. Reinterpret states as sites in synthetic dimension -> Internal atomic states
- 2. Couple states to simulate a "hopping" term
- -> Coupling lasers



Florence: Mancini et al, Science, 349, 1510 (2015) Maryland: Stuhl et al. Science, 349, 1514 (2015)

Also now with clock transitions:

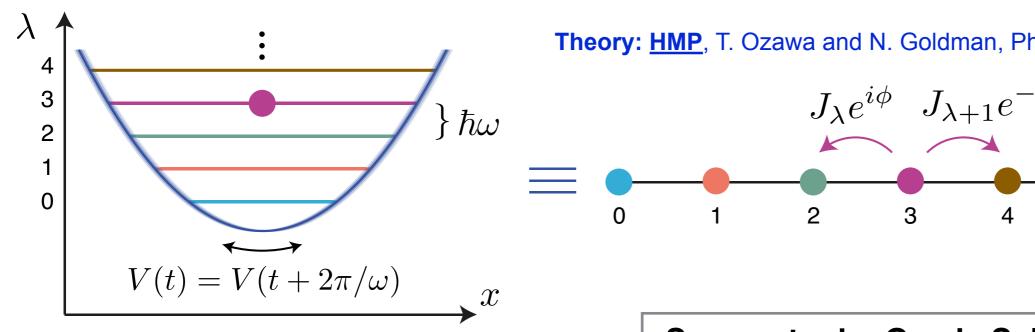
Florence Livi et al, Phys. Rev. Lett. 117, 220401 (2016)

Boulder: Kolkowitz et al, Nature, 542, 66 (2017)

Synthetic dimension with harmonic trap states

Ingredients:

- 1. Reinterpret states as sites in synthetic dimension -> **Harmonic oscillator states**
- 2. Couple states to simulate a "hopping" term
 - -> Shaking of harmonic trap



Theory: HMP, T. Ozawa and N. Goldman, Phys. Rev. A 95, 023607 (2017)

See poster by Grazia Salerno!

Also: synthetic dimensions for photons:

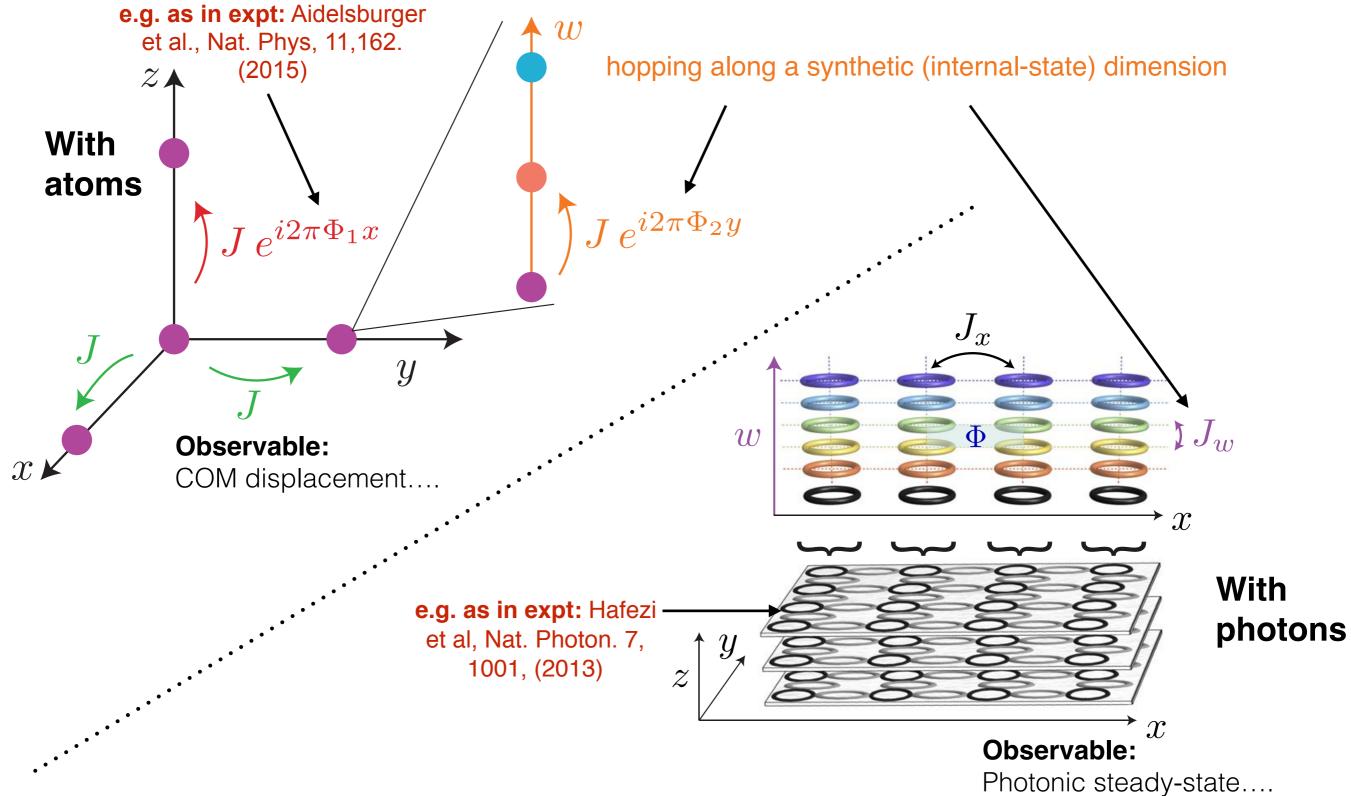
Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015) Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015)

Integrated photonics: Ozawa, HMP, Goldman, Zilberberg, & Carusotto, Phys. Rev. A 93, 043827 (2016),

L. Yuan, Y. Shi & S. Fan, Optics Letters 41, 4, 741 (2016)

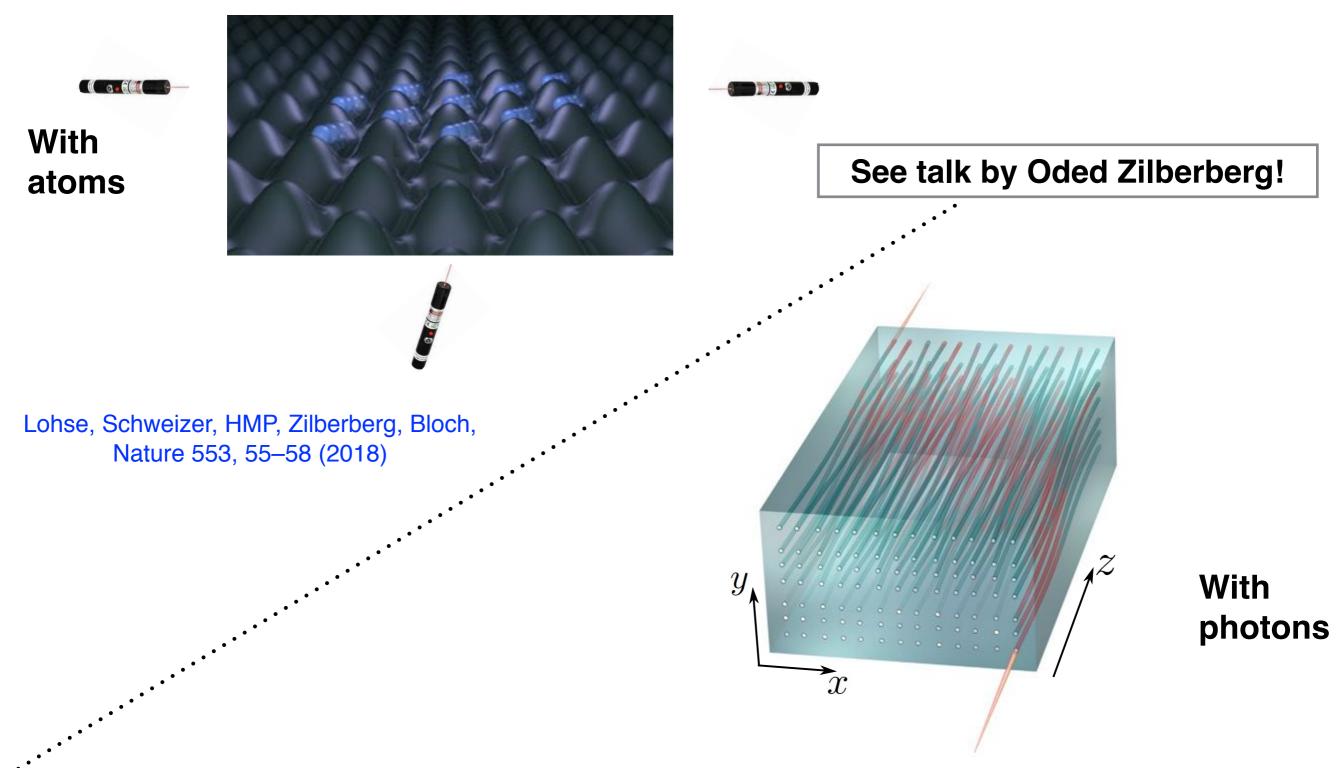
Ozawa & Carusotto, PRL, 118, 013601 (2017) Waveguides: Lustig et al, arXiv:1807.01983

4D QH with Synthetic Dimensions



HMP, Zilberberg, Ozawa, Carusotto & Goldman, Phys. Rev. Lett. 115, 195303 (2015) T. Ozawa, HMP, N. Goldman, O. Zilberberg, and I. Carusotto, Phys. Rev. A 93, 043827 (2016)

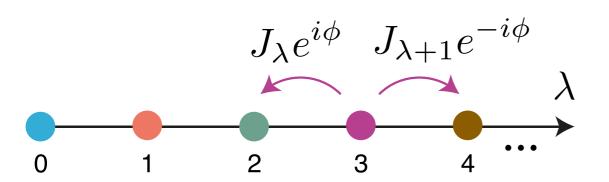
4D QH with Topological Pumping



Zilberberg, Huang, Guglielmon, Wang, Chen, Kraus, Rechtsman., Nature 553, 59 (2018)

PhD Position Available!

Summary Topological physics in **four dimensions** $Je^{i\frac{2\pi}{a}\Phi_1x}$

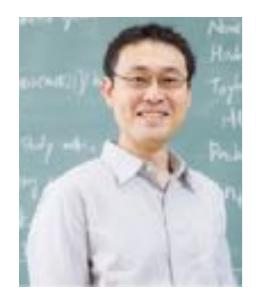


Synthetic dimensions for cold atoms or photons

Review: "Topological Photonics"

Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto arXiv:1802.04173

In collaboration with:



Tomoki Ozawa (Riken, Japan)

lacopo Carusotto (Trento)

Ioannis Petrides (Zurich)

Oded Zilberberg (Zurich)

Grazia Salerno (Brussels)

Nathan Goldman (Brussels)

(Munich)

Michael Lohse Christian Schweizer Immanuel Bloch (Munich)

(Munich)