Probing the Stability of Many-Body Localization

Christian Groß Max-Planck-Institut für Quantenoptik, Garching

Controlling quantum matter: From ultracold atoms to solids, Vilnius, 01.08.2018

Magnetic Polarons in Fermi Hubbard Systems

Christian Groß Max-Planck-Institut für Quantenoptik, Garching

Controlling quantum matter: From ultracold atoms to solids, Vilnius, 01.08.2018

The physics of complex solid state materials

Prominent electronic toy model: Hubbard model

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

Review: Lee, RMP 2006

Hubbard models in optical lattices

A crystal made by interference of light

Hubbard models in optical lattices

A crystal made by interference of light

Mobile quantum particles in the lattice - Hubbard models

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

Emerging magnetic energy scale $J = \frac{4t^2}{U}$

A specialized quantum gas microscope

Fourier plane

Atomic plane

Christian

Groß

A specialized quantum gas microscope

Fourier plane

Atomic plane

Independent optical lattices for imaging

Imaging spins and "charges"

Christian Groß

Boll, Science 2016

Christian

Groß

Imaging spins and "charges"

Full local information: Density and Spin Access to spin-spin and spin-density correlations

Boll, Science 2016

Charge sector: Delocalization

Spin sector: Antiferromagnetism

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

$$\hat{H}_{\text{Heis}} = J \sum_{i} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+1}$$

Charge sector: Delocalization

Spin sector: Antiferromagnetism

What is the spin alignment around holes?

 $|\Psi
angle = |$ () () () ()

 $|\Psi
angle = |$ () () () () ()

Charge sector: Delocalization

Spin sector: Antiferromagnetism

What is the spin alignment around holes?

Charge sector: Delocalization

Spin sector: Antiferromagnetism

What is the spin alignment around holes?

$$|\Psi\rangle = | \bigcirc + \cdots \rangle$$

Spin alignment across holes

$$C_{SH,N_h}(d) = 4 \langle \hat{S}_i^z \hat{S}_{i+d}^z \rangle_{\bigcirc_i \{ \bigoplus \}_{N_h} \bigcirc_{i+d}}$$

Christian Groß

Hilker, Science 2017

Spin alignment across holes

$$C_{SH,N_h}(d) = 4 \langle \hat{S}_i^z \hat{S}_{i+d}^z \rangle_{\bigcirc_i \{ \bigoplus \}_{N_h} \bigcirc_{i+d}}$$

Christian Groß

Hilker, Science 2017

Hidden correlations

AFM parity flips suppress the standard 2-point correlator $C(d) = 4 \left(\langle \hat{S}_i^z \hat{S}_{i+d}^z \rangle_{\bigoplus_i \bigoplus_{i+d}} - \langle \hat{S}_i^z \rangle_{\bigoplus_i} \langle \hat{S}_{i+d}^z \rangle_{\bigoplus_{i+d}} \right)$

Hidden correlations

AFM parity flips suppress the standard 2-point correlator $C(d) = 4 \left(\langle \hat{S}_i^z \hat{S}_{i+d}^z \rangle_{\bigoplus_i \bigoplus_{i+d}} - \langle \hat{S}_i^z \rangle_{\bigoplus_i} \langle \hat{S}_{i+d}^z \rangle_{\bigoplus_{i+d}} \right)$

Reveal hidden spin correlations in "squeezed space"

discard sites with holes

Kruis, PRB 2004 | Kruis, EPL 2004

Correlations in squeezed space

Standard 2-point correlator

Christian Groß

Hilker, Science 2017

Correlations in squeezed space

Squeezed space 2-point correlator

Christian Groß → Spin-charge separation

Hilker, Science 2017

Incommensurate magnetism - charge

Holes / Doublons dilute (stretch) the spin correlations

Christian Groß

Salomon, arXiv: 1803.08892

Incommensurate magnetism - charge

Holes / Doublons dilute (stretch) the spin correlations

Christian Groß

Salomon, arXiv: 1803.08892

Incommensurate magnetism - charge

Holes / Doublons dilute (stretch) the spin correlations

Linear density dependence of the wave vector (as expected by Luttinger theory) $\langle \hat{S}_i^z \hat{S}_{i+d}^z \rangle \propto \cos(\pi (1 - n_h)d)$

Salomon, arXiv: 1803.08892

Thank you! The Lithiums

Guillaume

Joannis

Timon

Summary

00000000 000000

Midden magnetism spin-charge separation

Incommensurate magnetism

Magnetic polarons

Christian Groß

+ Eugene and Fabian @ Harvard

Mim